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SOME REPRESENTATIONS OF THE SOLUTIONS OF BOUNDARY VALUE PROBLEMS
OF TWO-DIMENSIONAL STATIC THERMOELASTICITY

V. A. SHACHNEV

Exact solutions are obtained for special boundary value problems of linear thermo-
elasticity of a homogeneous anisotropic cylindrical body in the case when force and
displacement in definite directions are given on the cross-sectional contour. These
directions can vary consistently along the contour. The exact solutions of the
special problems are used as the representations of solutions of other boundary
value problems and to reduce a boundary value problem to the solution of a certain
one—dimensional singular integral eqguation. The integral equation for an ortho-
tropic strip is obtained as an illustration.

1. Let us consider a homogeneous anisotropic body in the shape of a cylinder of arbitr-
ary cross~section on which force and temperature loads act without altering the cylindrical
surface in the generatrix direction., We introduce a rectangular coordinate system such that
two axes would be in the plane of the cross-gection while the third would be directed along
the cylinder generatrix. Then, the given forces p; (i=1,2,3) distributed along the bound-
ary surface, and the relative temperature ¢ will be functions of just the first two coord-
inates, i.e.,p; = p; (), &} and & = & (z;, ;). It is assumed that the forces p; satisfy the equili-
brium conditions on the boundary surface.

We assume the stresses corresponding to the loads p;;(i,j= 1,2,3) to be two-dimensional
also. They then satisfy equilibrium equations of the form

2
3 0pi;=0, pi=py (1.1)
j=1

Here &; is the partial differentiation operator with respect to 3z (mass forces are not
taken into account, they can be taken intc account by using singular solutions for an unbound-
ed medium).

We write the governing relations for a body with rectilinear anisotropy in a form permit-
ted with respect to the strains

3
Ei5=k§lllﬂijupu+5isﬂ;‘5s i,j=1,2,3 (1.2)

Here the coefficients a;j; satisfy the symmetry relationships @;jn = oyxn %kl = Qi &
are the coefficients of linear expansion.

Let us note that a symmetry of the form oy = oy, is not assumed here since existing
experimental values of the coefficients often do not satisfy this condition.

Since pgs is not in (1.1), we also eliminate it from the relationship (1.2), We will
consequently have the following governing relationships

3
Byj == . g @i Pt | ai® F aijeEas {1.3)
v, I=1

Agjxr == Bijpr — Bijolaakts @35 == 04 00 — Qijoda,  ijo = Gijan/Caass (1.4)

It follows from (1.4) that gisss = Gsse;r = €33 = 0, and from (1.3) that the gy depend also
on only %, %3, then the general strain compatibility conditions /1/ reduce to relationships
of the form

Pueyy 4 Ohegg = 20,8580, Oy — HiBzz = €, EByy = Co F OFy + Loy, € 6 = const (i =0,1,2) (1.5}
Let us extract stress and temperature elements from their fields, namely of the form

pu*= psg* = pge* == 0, p?ss == Cgp + €y -+ Cia¥s, I 1,2,3, 9*=a¢- ayx1 + aste

For Cgy = —¢y; the first of the fields satisfies the equilibrium equations {1.1) ident-
jcally. The displacements u;* corresponding to these fields, that are found by integrating
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the relationship &mu;® -+ 6ju*= 22;,!, will be polynomials of not more than the second order. We
select the coefficients in the elementary field representations so as to satisfy the relations
(1.5). Then for the remaining stress field p;® = p;;— py* and temperature field 00 =& — 8*
the relations (1.5) will be homogeneous, i.e, we should set ¢ =¢; =0 therein. Therefore,
we shall consider the fields pi; considered below to be defined only to the accuracy of the
elementary fields. Let us represent them by using the stress functions Fand G:

= 32F, poy = 0'F, p1s = —0,0,F, pn = 0G, pss = —6,G (1.6)

We obtain the following system of equations for the stress functions from (1.5) and (1.6),
where e53 =0 and ¢ =20:

LyF + 216G = —M8, Ly, F -+ 2L;G = —M 0 (L.7)
Lyy==811110y%—2 (61112 +a1311) 33°31 + (B1133 + Gana1+4B1a13) 32?9, *— 2 (Bs212 + B1233) Fa01® + Gangedr®

Lyy = 0413183% — (as123 -+ 8a3a1) 0301 + Gasayds®

Lys = 6113195® — (81193 - 261201) 83%01 + (Ga3s1 + 281028) 3201” — Garasls®

Loy = a311105® — (2011 - 283113) 32201 + (@3105 + 2a3313) B201” — Baze001®

ar P 9. A d . ag A __ - A P
iV = G110y — w9090y 1 GagUy~, ivig== Gg1Us — G230

We note that Ly ==L;; if aeyu; = ap,.

We assume the temperature ¢ satisfies a heat conduction equation of the form
L = 0, Ly = kes0s® + 2k13010, + Fry9,* (1.8)

where the operator L, is strictly elliptic. This latter means that the characteristic poly-
nomial I, = keyy® + 2ky,v + ks has just complex roots ¢, = a, + ify and 7P,. Representation of
the operator Ly = kg8 — V¢01) (93 — ¥o8;) corresponds to expanding Ily(y) into factors. The
kernel of each cofactor is analytic in the domain of a section of the function Ty(3,), Ta(Z,),
Zy = %5 + Yo%, and according to the Boggio theorem /1/, the general (classical) solution of
(1.8) has the form @& = T,(z) + T:(%,). Taking into account that ¥ is real, we obtain that
Te=T,T,=T, and we finally write the general solution in the form & = 2ReT (3,), where

Tiz) is an analvtic function of a comnlex variahle in the cross-—gectional domain. We assiume

at ALY TLC Tunction plex Arianl in e CrosSs Lional comain, assume

that T (3) is also a certain particular solution of (1.8) that satisfies the given boundary
condition.

Ammman Il enme b hlho wamascamandadd o abldad el Faae A =t svsten AL mmsvrmdd memam T 7Y 22d 1T mmena
aALLULULLY i LT L ELﬁacLll—ﬂhLUll hJLallicu LuUL v [l xbl—cﬂl L CHHGLLUJAD \dLat) wWJilli liQve
the form
Ly F +2L,,G = —2Re (my(ve) T7(20)), My = a1, ¥* — 28157 + @y (1.9)
Ly F 4 2Ly,G= —2Re (m, (Yo) T" (20)), Mg = ag ¥ — 83
Here m; are characteristic polynomials of the operator M,

Assuming the temperature field not to be reduced to an elementary field and hence T"(zy) #
0, the particular solution of the system (1.9) is determined in the form

= —2Re (k; (vo) Hy (2)), G = — Re (k5 (vo) Ho (20)), Ho" (30) = T (20)

l. f—

7 | A Y] 1. 1
= \Iiyigg — Tiiglye)ii i fig =

= (maly — myin)ii, 1= bylyy — balyy
Here l;; are characteristic polynomials of the operators L.

The general solution of the homogeneous system of equations corresponding to the system
(1.9) is represented in the form F = LyH, G= —',L,H, where the case when Ln and ULy can
have a common nontrivial factor is eliminated here. Then H satisfies the equation

LH =0, L= LyLyg — LygLyy

The characteristic equation ! (y) =0 has three complex roots Yn = o, + ifs, n =1, 2, 3, and
three conjugates (see /3/). We assume that all the roots are distinct. The case of equal
roots is considered degenerate in the final solution of the problem. Expanding the polynomial
1(y) into factors and representing the operator L analogously to the heat conduction operator

Ly, we obtain the general solution in the form

Here H,(z,) are analytic functions in the domain of definition of their arguments. The general
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solution of the system (1,9) has the form

3 3
F=2Re (nEI Ls (Va) B (2n) — k1 (v0) Ho (20)), G = — Re ( 3 Loz (Va) En(2n) + ks (v0) Ho (20)) (1.10)
== n=1

Here E, = H," (z,) are analytic functions.

To determine E, we obtain relationships on the boundary that correspond to the funda-
mental problems of elasticity theory. From the relationships for the stress functions on the
section contour /3/

0,F =P, —8,F =P, G=P, Pi— +ipds, i=1,2,3

where P; are defined to the accuracy of nonessential constants selected so that P; at a
given point of the contour would take on the necessary values (the plus sign is taken for the
outer contour of the section, and ds is the differential of an arc of the contour), the fol-
lowing conditions on the contour result for the functions @, = E,’ (j=1,2)

3 ) 3
2Re n§1 YEU_]ZE‘J (vn) D, () = (— 1)j—] Tj » Re 2'1 lgy (vn) D, (2n) =— Ts (1.11)

T; = Py — 2Re ((—yo)27 k1 (vo) Ho' (20)), T's = P3 -+ Re (ka(vo) Ho'(20)) (1.12)

For T;=0 the condition of equivalence of the temperature and force loads on the boundary
follows from (1.12).

We now find the boundary conditions for the function @,(z,), that result from the bound-
ary conditions for the displacements. By determining the stresses according to (1.6) and
(1.10), we obtain

Pis = 2Re ( 3 (— a7 Lun () @' (2n) — (— 01T () T (20)) (1.13)
Pis== Be("§1 (_ 'Y'n)z—i la1 ('Vn) (D'n’ (Zn) + (_ Yﬂ)z_i ky (VO) T (Zo))

Integrating the equations d;u; -+ d;u4; = 2ey;, having hence determined the strain from the
relation (1.4) with (1.13) taken into account, we obtain for the displacements

3 : :
u; = 2Re (1211 '\’rfii* (Vn) @n (z0) — Ylo_zaﬁo (vo) Ho' (Zo)) (1.14)

3
g = 4Re { 3 #ax* () @ () — €10 (0) Ho' (20))

i = (ai;17% — 28,5007 + 8yja2) Lae (V) — (@ija17 — @yjos) Laa (¥)

o= ai; — (ai;uV® — 2055007 + Gijoa) Fa (V) — (@5jm¥ — @ijes) K2 (V)

Boundary conditions for @, (z) result from (1.14).

2. To restore the analytic functions by means of their boundary values related by means
of (1.11) and (1.14), we examine some special problems. The degree of definiteness of such
problems is related to the nature of the material anisotropy. We consider only orthotropic
material here, for which

G =0, k%1 aype =0, i j; ayer =0, kl £ i§f

in the governing relationships (1.3).

In this case Ly = Ly =0, and the system (1.7) decomposes into two independent equa-
tions Ly F = —M,® and LG = 0, which corresponds to separating the problem into bending with
tension and torsion with longitudinal shear in the direction of the cylinder generatrix. This
latter problem is not related to the temperature field. Let us examine just the first problem
since the solution of the second is trivial.

The heat conduction operator has the form L, = kyd® + k,,8,%, and therefore, y, = iV Bl kgg
The characteristic equation corresponding to the operator Ly, is found in the form

I (%) = auu¥® + (@uze + dsans -+ 481219) V° -+ Gasee = 0 (2.1)

and has two complex conjugate roots. Setting kL =l =0 in (1.10), we obtain the following
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representation for the stress function

F ==2Re (él’,,(z.)-—-m;(‘y.)lﬁ‘('{.)ﬁ'o(u)) , 2ReFy (5)=10 (2.2)

Here Fu(ss) are analytic functions of their arguments, 2, =2; - Va¥s.
The boundary conditions for the functions ®, = F,' will have the following form in terms
of the force loads and temperature
3
2Re 3 WK'Ou ()= (— )T, j=1.2 (2.3
e’
Ty = Py — 2Re ((—va)* my (vo) L™ (vo) Fo' (50)
and in terms of the displacements and temperature
S (2.4)
2Re 21 Tl () Calz) =Uj 85 =05uy" + a;ps .
o]
U; = u; + 2Re (vo*” (85 — &; (vo) M1 (%0) ™ (¥0) Fo' (20))
Let us consider the following boundary value problem. Let Ty and Uy* be the boundary

"force” and "displacement® in the directions of the angles O and 0% to the g, axis, res-
pectively. According to (2.3) and (2.4), we have on the boundary

3 )
Ty==T)co88 + Tys8in0=2Re D £, P, (z.), Ue.=2Re’§1 ., (z0) {2.5)
ne=l
t, = y,008 0 — 8in 0, d, = &; (y,) cos 8* + v, 'e, (¥,) sin 6*

We introduce the auxiliary functions W, = 1,®,(z,). We represent the boundary conditions
(2,5) in the form

2 3
4_{o*
2Be2{‘l’,=2’9, Zﬁezlsuﬁ‘l’ = Uges uﬂ=...;:‘(e_)’. (2.6)

Defining the angles 0 and 0%,so that the coefficients %, become real, i.e.,

Imx, (8, 6% =0, n =1, 2 2.7

Let us investigate the nontrivial solutions of these egquations.

Depending on the sign of the determinant d = (8504 + Gae11 + 42101s)® — 48543100y the character-
istic equation (2.1) has roots of two kinds: if d>0, then y, =i, if 4«0, then yP=7F
a4 iff, n==14,2, and two conjugate roots (the case of equal roots is excluded).

For roots of the form y, = if,, condition (2.7) is possible in twocases: 0§ =0,6* ==n/2,
or 9=mn/2,6%=0. In the first case, the force T; and the displacement U, are given on
the body boundary, while in the second case the displacement U, and the force T, are given.

For roots of the form ¥y, = F o + i, according to (2.7) the following formulas to define
the angles are valid

tg0=1-¢(@nn/enn)’s, 1g0% =T¢(a1111/amm)"
8= ((Vauuann — Gun)/(Vaannaun —_ anu))'/ *

For the values of € and 0% cbtained, the roots are %% % in both cases, hence, the
system (2.6) is solvable in a unique manner for ReV¥,. Solving we obtain

Re‘l’:=3§H, Ro‘r,=.—_’°2‘.:i°_:_'53:. (2.8)

The boundary value problem is therefore reduced to the restoration of the analytic func-
tions in their domains of definition by means of their real parts on the boundary. Let z = f{{)
be the mapping of some standard domain in the plane of the complex variable {=%!4 i in a
given domain of the complex variable z=z + iy (z =z, y = 2,). Any domain for which the
Schwartz operator that restores a function analytic in a domain by means of its real part on the bound-
ary is constructed effectively can be selected as standard. For definiteness, we assume that
the cross~sectional domain is simply~-connected and bounded by a piecewise-~smooth curve, and
the half-plane 4§50 is selected as standard domain.
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The mappings .
aﬂ
zn:_-AnZ, Anr_::"o ﬁﬂn’ n=1,2

{(where ¢, -+ if, =y, are the roots of the characteristic equation) carry the domain of the
bar cross-section over into the corresponding domains of the planes of the complex variables
Zn =Zp -+ Y=z -+ Py, n =1, 2. The mappings 2z, = 4,f({) are not conformal, hence, we con-
sider the mappings 2n = f, (L), L= &+ s, n =1, 2 simultaneously, which map the upper half-
planes 1, >0 conformally into images of the transverse section for the mappings 2z, = A,z
We then have the relationships f, ({,) = A,f({), n = 1,2 that connect the variables {, and .
Let us assume that Ty and Ugp are given as functions of 2, and let us introduce the

following real functions

To— g l®) -
o) = 220000 @), m=12 (2.9)
According to (2.8), we obtain
2Re¥, ={“‘1)ﬂ_1¢n (gﬂ): no=1, 2

Here Ty and Ug are given such that the functions 1§, have a definite finite limit as §,—
oo (E—0), and satisfy the HGlder condition on the whole axis. Applying the Schwartz operator
for a half-plane, we obtain the following representations for the required functions:

4\ K \pn T, -
¥y (2,) = ( 21;31 S Tn-C(n'(.i,.) dv, + ic, ;ﬂ(zn)mfﬂl (zn)

The constant ¢ is not essential for later, and will be omitted. If 1,{o0)==0, then 4, (1,)
under the integral should be replaced by ¥, (1,) — ¥a (00).

The representations obtained for ¥, yield the exact solution of the boundary value prob-
lems in the case when the force Ty and displacement U are given on the boundary of the
section of a cylindrical body. In order to determine the connection between the obtained re-
presentations and the other boundary value problems, we assign the force and displacement in
the direction of the angles © and ©* to the ¥ axis. Then by using (2.5) in which @ should
be replaced by ®, and having set O, = ¢,”'¥,, where the relationship

7y U g+ | g )

‘l.'"-—ﬁ"

is satisfied on the boundary according to the Sokhotskii— Plemelj formulas, we obtain

§Z'ﬂ~—;(—1)n~:(ne ¥ () + Im l_}?—gj“:{%mﬂ) (2.10)

n = iy (@)1, (8), % = d (0%)/i, (8)

The representations (10) result directly in integral equations for the solution of different
boundary value problems. As an illustration, we consider the first boundary value problem of
elasticity theory, when the forces T, and T, , or equivalently, Ty and T, are given on the
boundary.

For roots of the characteristic equation of the form ¥, == i, we have Red, =~ Reo, == Reo.
If the governing relations are symmetric, i.e., @ == @yx, this is valid also for roots of
the form v, = Fa -+ if. We shall henceforth consider these cases only. From (2.9) and (2.10)
we obtain an integral equation in U* (§) == U (f(E)) of the form

Yy (—)Ims, ¢ U*(r(t,) e
P— itn_gnw At =T* ) & ® =1 (4f @) (2.11)

n==1

I () pIme,  F T*(v(z)
7% (6 — (ia— 1) (T* ©) — Ro o Tt @) — Y 200 5 {280

n=}

At T8, 0®)=Ts,u(fE)

The equation obtained is a singular integral equation with shift, where questions on the exist-
ence of ite solution are examined in /4,5/. Here the existence of a unique solution under
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appropriate agsumptions will result from the following. We set o= 0* and ©*=06 in (2.10)
and we select two distinct pairs of values of O and 0* Let us consider the case of the
roots 9, ==ip, Setting 0==0,6* ==n/2, we have from {2.9) and (2.10)

Us* _ N (=t Ba An !"'s-nrl “MUC
|2 |- Lmmmrtm || L =m0 (212

Ap=anupn® —ongm, pa= amlﬂn — G333

Setting @==n/2 and 6* =0, we obtain
lT;*% > —4™18, i I§ — g oTo*+ Uy* P (2.13)
o —_— iy,

A — mayn (B — BiY /B, E T By

There follows from the representation of (2.12) and (2.13) in operator form

UI‘ TI
[rl=xlae]. [oel=n]z]

that the operators K and N are reciprocal. The existence of a unique solution of the approp-
riate integral equationsg in the class of H8lder-continuous functions results from the exist-
ence of the inverse operator. Meanwhile, the operators K and N are integral transforms with
an inverse for any pair of H8lder-continuous functions on the whole number axis.

Let us now examine the case of equal roots for the characteristic equation, which we
obtain by passing to the limit as f,~> B, in the relationships (2.12) and (2.13). We assume
the function §, = f;"* (4:4,7Y, (8)), which maps the number axis into itself one~to-one, is smooth
enough. Let 7y, =if, Let us consider just the second relationship in (2,12), which wewrite
in the form of an equation in U,*:

F3 - * 3 — * {2.14)
B:fa S Bk m)—Bs U s ("1)) @ty = nansss (Br + Po) Te* & (C2)) + S Baitak (61, Ta) — Baths T4 (‘(‘1)) an

— B n—& Be—Bs Ty -

—

k(81 7)) = %/ (zy) (ry — E/(vs (1) — & (&)
Assuming

Pi=p B=P+e L=olna=bL+e¢E)e+ole)
@ (E1) = (9¢/08)gmy

and passing to the limit undexr the integral sign as ¢ — 0, we obtain an integral equation for
the case of equal roots in the form

Fow § TR U == TR G + 5 | PR REE ey (219

u—&

—_ s

o P () —o &) 9 (n) Oy
k (El tl)= T — & &, ] Av—“""‘;‘a%

For an isotropic material dews={(1 — v/ E, gy, = —v (1 + v}/E, A=~ (1 —v), v isthePoisson's
ratio, E is the elastic modulus, the characteristic equation (2.1) has equal roots Y= i
such that B=1, and 7,=r7,§ =1% should be put into (2.15).

Example. If k(. t)=1 in (2.14), an@ ¥ (&, % =0 in (2.15), then these equations are
solved exactly by applying the Cauchy inversion operator. The dependences &; =}, + b, ¢ (§) =
af; + b, a, b= const correspond, respectively, to these cases, where a particular case of the
former is used in /3/ to solve the anisotropic problem of deformation of a domain outside a
parabola. The transformations s, = 4, transfer a parabola into the parabolas, and the domains
outside the parabolas are images of the half-plane under the mappings s = PBa? (la® + 12¢8a) — ¢%
where ¢ is the parabola parameter. The relation between ¥, and { on the half-plane bound-
ary yields f.¢, = B¢, which corresponds to the case under consideration. Let us present the
solution for an isotropic medium
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ve @ == AtV re g loy ( 20

Equations (2.14) and (2.15) are obtained under the assumption of sufficient smoothness
of the functions therein. Let us now extend these equations to the case of a more general
form of the function §, == @ ({;). We convert the integral equation (2.14) to a form where
smoothness conditions are not formally present for the function mentioned. To do this we
first obtain a formula to rearrange the singular integrals with special kernels.

For a real Hdlder-continuous function © () on the whole number axis, and for a function
¢ (§) mapping the number axis into itself one-to-one, where its derivative is not zero and is
HS6lder-continuous, we have

AF 1 {ume g 1§ 1 { veae _ OO ¥ 6 E—p)
ﬂ’_Snpmi_S oM AT S P S do. V=" e m

The function v is here HSlder-continuous. Applying the Bertrand—Poincaré commutation to the
last integral, we obtain

40 1 ¢ uwmer _ ¢ ¢ dp
w _S;-—p-a__S AT TreO+ = Sjm_& G=Ba e (2.16)

Here the inner integral on the right is understood in the principal value sense with respect
to the point & and ¢l (7).
Now applying the operator § to (2.11) so that

su=—+ { = ap

taking into account that 8% == —u, and assuming the conditions of (2.16) to be satisfied, we
obtain the following integral egquation

-

@ —o) U@ + 22 { k@@ T EEydn =+ | 20,

— -

(2.17)

1 o
B T)=— S (Pr — E1) (T2 — © {P1))
-

As an application of (2.17), we obtain the integral equation for bending of a strip. The
mappings . = 4az transfer a strip of width & parallel to the z-axis into similarly located
strips of width @, for any roots of the characteristic equation. For definiteness, we con-
sider the case y4= F a-+ if, which holds for many kinds of wood /6/, for birch, say. The upper
half-planes are mapped into strips by the functions sz =sfuhlnin so that we have on the

boundary
20k=5L<0 §s = ¢k, ¢ == exp (2na/B)

We obtain from (2.17) for B0,k 0

Injvg| —Inl&} ln]nt—ln)c&,l Ty by oy

A Ay o ) % 6= o

We have for the remaining § and

. . & flIne iy, -

£>0, ua‘caou;tg(m—?), B, <O, k(£ &)= oo
B >0 kG B) =000 E<{0, k(b E‘l)=£€;( clici)
k (0, t5) = 2net/B, k (§y, 0) == oo

3. We now construct a more general representation for an orthotropic material in the case
when the boundary conditions can change along the boundary, namely, we assume that 8 and its
conjugate angle 0* are a function of the boundary points. To do this we assume that the
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relationship (2.7) is satisfied just for some one n. In the case of the roots 7y, =ifs, n=
1,2 there hence follows a dependence between the angles of the form

ctgf* = %—r?i-—tg 8
n

For difiniteness, we select n=2. In place of (2.6), we then obtain

2Re¥, + 2ReW, = T, 2Re(x“l’1) + 2%,Re¥, = Uge (3.1)

Eliminating W, we obtain  2Re ((%y — %;) ¥)) = %379 — Ugs. Assuming that %, — %, depends on
points of the boundary such that (x, — %;) ¥; is the boundary value of an analytic function,
we analogously find

¥; (21) = 5 S—ﬁ——"‘(’,)dr (3.2)
Here the function +¢; is determined from (2.9), but is already not real. Determining Re¥,

on the boundary from (3.2) by using the Sokhotskii—Plemelj formula, we obtain from the first
relationship in (3.1)

T* (v (v2)) — 2Re ¥,* (v (xy))
‘I" (z‘) = E S 2 T3 — Le (‘!)‘ dTﬁ
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